Pubblicazioni

[1] Fotso Tachago J., Nnang H. and Zappale E., Reiterated periodic homogenization of integral functionals with convex and nonstandard growth integrands, Opuscula Math. 41, no. 1 (2021), https://doi.org/10.7494/OpMath.2021.41.1.113.

[2] Kreisbeck C. and Zappale E., Loss of double-integral character during relaxation, SIAM Journ. of Math. Anal., https://doi.org/10.113720M1319322.

[3] Matias J., Morandotti M., Owen D. R. and Zappale E., Upscaling and spatial localization of non-local energies with applications to crystal plasticity, Math. Mech. of Solids, https://doi.org/10.1177/1081286520973245

[4] Fotso Tachago J., Giuliano Gargiulo G., Nnang H. and Zappale, E., Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting, Evolution Equations & Control Theory, (2020) -online first doi = ”10.3934/eect.2020067”.

[5] Prinari F. and Zappale, E., A relaxation result in the vectorial setting and power law for supremal functionals, J. Optim. Theory Appl., 186, (2020), n.2, 412–452, https://doi.org/10.1007/s10957-020-01712-y.

[6] Kreisbeck, C. and Zappale, E., Lower semicontinuity and relaxation of nonlocal L∞ -functionals, Calc. Var. Partial Differential Equations, 59, (2020), n. 4, Paper No. 138, 36, https://doi.org/10.1007/s00526-020-01782-w.

[7] Ferreira, R. and Zappale, E., Bending-torsion moments in thin multi-structures in the context of nonlinear elasticity, Communications on Pure and Applied Analysis, (2020), 19, n. 3, 1747–1793.

[8] Barroso, A.C. and Zappale, E., Relaxation for Optimal Design Problems with Non-standard Growth, Applied Mathematics and Optimization, (2019), 80, n. 2, 515–546. doi=10.1007/s00245-017-9473-6.

[9] Zappale, E. and Zorgati, H., A note about weak* lower semicontinuity for functionals with linear growth in W 1,1 × L1 , Journal of Elliptic and Parabolic Equations, (2017), 3, n. 1-2,93–103. doi=10.1007/s41808-017-0006-x.

[10] Kozarzewski, P.A. and Zappale, E., Orlicz equi-integrability for scaled gradients, Journal of Elliptic and Parabolic Equations, (2017), 3, n. 1-2, doi=10.1007/s41808017-0001-2.

[11] Carita, G. and Zappale, E., Integral representation results in BV × Lp , ESAIM-Control, Optimisation and Calculus of Variations, (2017), 23, n. 4, 1555–1599, doi=10.1051/cocv/2016065.

[12] Matias, J., Morandotti, M. and Zappale, E., Optimal design of fractured media with prescribed macroscopic strain, Journal of Mathematical Analysis and Applications, (2017), 449, n. 2, 1094–1132,doi=10.1016/j.jmaa.2016.12.043.

[13] Zappale, E., A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains, Evolution Equations and Control Theory, (2017), 6, n. 2, 299–318, doi=10.3934/eect.2017016.

[14] Carita, G. and Zappale, E., A relaxation result in BV × Lp for integral functionals depending on chemical composition and elastic strain, Asymptotic Analysis, (2016), 100, n. 1-2, 1–20,doi=10.3233/ASY-161383,

[15] Carita, G. and Zappale, E., Relaxation for an optimal design problem with linear growth and perimeter penalization, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2015), 145, n. 2, 223–268, doi=10.1017/S0308210513001479

[16] Amendola, M.E., Gargiulo, G. and Zappale, E., Some remarks about dimension reduction for ?? , Asymptotic Analysis, (2015), 92, n. 3-4, 187–202,doi=10.3233/ASY-151296

[17] Ribeiro, A.M. and Zappale, E., Existence of minimizers for nonlevel convex supremal functionals, SIAM Journal on Control and Optimization, (2014), 52, n. 5, 3341–3370, doi=10.1137/13094390X, issn=03630129.

[18] Amendola, M.E., Gargiulo, G. and Zappale, E. Dimension reduction for ??, ESAIM - Control, Optimisation and Calculus of Variations, (2014), 20, n. 1, 42–77, doi=10.1051/cocv/2013053.

[19] Zappale, E., A remark on dimension reduction for supremal functionals: The case with convex domains, Differential and Integral Equations, (2013), 26,n. 9-10, 1077–1090.

[20] Ribeiro, A.M. and Zappale, E., Relaxation of certain integral functionals depending on strain and chemical composition, Chinese Annals of Mathematics. Series B, (2013), 34, n. 4, 491–514, doi=10.1007/s11401-013-0784-x.

[21]Carita, G. and Zappale, E., 3D − 2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization, Comptes Rendus Mathematique, (2012), 350, n.23–24, 1011–1016, doi=10.1016/j.crma.2012.11.005,

[22] Babadjian, J.-F., Prinari, F. and Zappale, E. Dimensional reduction for supremal functionals, Discrete and Continuous Dynamical Systems, (2012), 32, n. 5, 1503–1535, doi=10.3934/dcds.2012.32.1503.

[23] Carita, G., Ribeiro, A.M. and Zappale, E., An homogenization result in W 1,p × Lq , Journal of Convex Analysis, (2011), 18, n. 4, 1093–1126.

[24] Gargiulo, G. and Zappale, E., A lower semicontinuity result in SBD for surface integral functionals of Fracture Mechanics, Asymptotic Analysis, (2011), 72, n.3-4, 231–249. doi=10.3233/ASY-2011-1032.

[25] Gaudiello, A. and Zappale, E., A model of joined beams as limit of a 2D plate, Journal of Elasticity, (2011), 103, n. 2., 205–233, doi=10.1007/s10659-010-9281-6.

[26] Gargiulo, G. and Zappale, E., Some sufficient conditions for lower semicontinuity in SBD and applications to minimum problems, Mathematical Methods in the Applied Sciences, (2011), 34, n. 12, 1541–1552, doi=10.1002/mma.1464,

[27] Zappale, E. and Zorgati, H., Some relaxation results for functionals depending on constrained strain and chemical composition, Comptes Rendus Mathematique, (2009), 347, n. 5-6, 337–342, doi=10.1016/j.crma.2009.01.024.

[28] Babadjian, J.-F., Zappale, E. and Zorgati, H. Dimensional reduction for energies with linear growth involving the bending moment Journal des Mathematiques Pures et Appliquees, (2008), 90, n. 6, 520–549, doi=10.1016/j.matpur.2008.07.003.

[29] Santos, P.M. and Zappale, E., Lower semicontinuity in SBH, Mediterranean Journal of Mathematics, (2008), 5, n.2, 221–235, doi=10.1007/s00009-008-0146-1.

[30] Gargiulo, G. and Zappale, E., A lower semicontinuity result in SBD, Journal of Convex Analysis, (2008),15, n.1, 191–200.

[31] Gargiulo, G. and Zappale, E., A remark on the junction in a thin multi-domain: The non convex case, Nonlinear Differential Equations and Applications, (2007), 14, n.5-6, 699–728, doi=10.1007/s00030-007-5046-8.

[32] Gargiulo, G., Zappale, E. and Zorgati, H. Curved nonsimple grade-two thin films [Modélisation de films courbés non simples de second gradient], Comptes Rendus Mathematique, (2007), 344, n. 5, 343–347, doi=10.1016/j.crma.2007.01.018,

[33] Gargiulo, G. and Zappale, E., The energy density of non simple materials grade two thin films via a Young measure approach, Bollettino della Unione Matematica Italiana B, (2007), 10, n. 1, 159–194.

[34] Baı́a, M. and Zappale, E., A note on the 3D − 2D dimensional reduction of a micromagnetic thin film with nonhomogeneous profile, Applicable Analysis, (2007), 86, n. 5, 555–575, doi=10.1080/00036810701233942.

[35] Gaudiello, A. and Zappale, E. Junction in a thin multidomain for a fourth order problem, Mathematical Models and Methods in Applied Sciences, (2006), 16, n. 12, 1887–1918, doi=10.1142/S0218202506001753.

[36] Gargiulo, G., Iovane G., and Zappale, E., A Cantorian potential theory for describing dynamical systems on El Naschie’s space-time, Chaos, Solitons and Fractals, (2006), 27, n. 3, 588–598, doi=10.1016/j.chaos.2005.05.015.

[37] De Arcangelis, R. and Zappale, E., The Relaxation of Some Classes of Variational Integrals with Pointwise Continuous-Type Gradient Constraints, Applied Mathematics and Optimization, (2005),51, n.3, 251–277, doi=10.1007/s00245-0040811-0.

[38] De Arcangelis, R., Monsurrò, S. and Zappale, E., On the relaxation and the Lavrentieff phenomenon for variational integrals with pointwise measurable gradient constraints, Calculus of Variations and Partial Differential Equations, (2004), 21, n. 4, 357–400, doi=10.1007/s00526-003-0259-0.

[39] Santos, P.M. and Zappale, E., Second-order analysis for thin structures, Nonlinear Analysis, Theory, Methods and Applications, (2004), 56, n. 5, 679–713, doi=10.1016/j.na.2003.10.007.

[40] Fonseca, I. and Zappale, E., Multiscale Relaxation of Convex Functionals,Journal of Convex Analysis, (2003), 10, n. 2, 325–350

Articoli non presenti su Scopus o WOS

[41] Ribeiro, A. M. and Zappale, E. Lower semicontinuous envelopes in W 1,1 × Lp, Calculus of variations and PDEs, Banach Center Publ., 101, 187–206, Polish Acad. Sci. Inst. Math., Warsaw, (2014), https://doi.org/10.4064/bc101-0-15.

[42] Carita, G., Ribeiro, A. M. and Zappale, E, Relaxation for some integral functionals in Ww1,p × Lqw , Bol. Soc. Port. Mat., (2010), Special Issue, 47–53.

[43] Gargiulo, G., Zappale, E. and Zorgati, H., Curved thin films made of non simple grade two materials, Adv. Math. Sci. Appl., 18, (2008), n. 1, 219–236

[44] Monsurrò, S. and Zappale, E., On the relaxation and homogenization of some classes of variational problems with mixed boundary conditions Rev. Roumaine Math. Pures Appl., 51, (2006), n. 3, 345–363.

Atti di Convegno

[45] Zappale, E., A note on optimal design problems in dimension reduction, AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, (2017), 2, 1811–1823,

[46] Zappale, E., Dimension reduction problems for non simple grade two materials, Progress in Nonlinear Differential Equations and Their Application, Applied and industrial mathematics in Italy, (2005), 63, 465–470, doi=10.1007/3-7643-7384-944.

[47] Zappale, E. Relaxation in presence of pointwise gradient constraints, Ricerche Mat., 54, (2006) n. 2, 655–660.2

[48] Zappale, E., Alcune questioni in omogeneizzazione: Condizioni di Dirichlet e problemi con scale multiple, Bollettino della Unione Matematica Italiana A, (2003), 6, n. 2, n. 339–342.

Atti di Convegno non indicizzati

[49] Tachago Fotso, J., Nnang, H. and Zappale, E Relaxation of periodic and nonstandard growth integrals by means of two-scale convergence, Integral methods in science and engineering, (2019) 123–131, Birkhäuser/Springer, Cham.

[50] Kozarzewski, P. A. and Zappale, E., A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral methods in science and engineering. 1. Theoretical techniques, 161–171, Birkhäuser/Springer, Cham, (2017).

[51] Gargiulo, G. and Zappale, E. Some approaches to the study of non simple materials grade two thin films, Multi scale problems and asymptotic analysis, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkotosho, Tokyo, (2006), 24, 167–179.

[52] Zappale, E., Γ-convergence via three scale convergence, Homogenization, 2001 (Naples), Gakkotosho, Tokyo, GAKUTO Internat. Ser. Math. Sci. Appl., 18, (2003), 289–295.